Variational Characterization of Interior Interfaces in Phase Transition Models on Convex Plane Domains

نویسنده

  • CLARA E. GARZA-HUME
چکیده

We consider the singularly perturbed Allen-Cahn equation on a strictly convex plane domain. We show that when the perturbation parameter tends to zero there are solutions having a transition layer that tends to a straight line segment. This segment can be characterized as the shortest path intersecting the boundary orthogonally at two points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOME PROPERTIES OF THE PHASE DIAGRAM FOR MIXED p-SPIN GLASSES

In this paper we study the Parisi variational problem for mixed p-spin glasses with Ising spins. Our starting point is a characterization of Parisi measures whose origin lies in the first order optimality conditions for the Parisi functional, which is known to be strictly convex. Using this characterization, we study the phase diagram in the temperature-external field plane. We begin by derivin...

متن کامل

Variational Principle and Plane Wave Propagation in Thermoelastic Medium with Double Porosity Under Lord-Shulman Theory

The present study is concerned with the variational principle and plane wave propagation in double porous thermoelastic infinite medium. Lord-Shulman theory [2] of thermoelasticity with one relaxation time has been used to investigate the problem. It is found that for two dimensional model, there exists four coupled longitudinal waves namely longitudinal wave (P), longitudinal thermal wave (T),...

متن کامل

On the Linear Combinations of Slanted Half-Plane Harmonic Mappings

‎In this paper,  the sufficient conditions for the linear combinations of slanted half-plane harmonic mappings to be univalent and convex in the direction of $(-gamma) $ are studied. Our result improves some recent works. Furthermore, a illustrative example and imagine domains of the linear combinations satisfying the desired conditions are enumerated.

متن کامل

Relaxation of Some Multi { Well Problemskaushik Bhattacharya

Mathematical models of phase transitions in solids lead to the variational problem, minimize R W (Du)dx where W has a multi-well structure: W = 0 on a multi-well set K and W > 0 otherwise. We study this problem in two dimensions in the case of equal determinant, i.e., for K = denotes the (3 2)-matrix formed with the rst two columns of U i. We characterize generalized convex hulls, including the...

متن کامل

A Multi-phase Transition Model for Dislocations with Interfacial Microstructure

We study, by means of Γ-convergence, the asymptotic behavior of a variational model for dislocations moving on a slip plane. The variational problem is a two-dimensional multi-phase transition-type energy given by a nonlocal term and a nonlinear potential which penalizes noninteger values for the components of the phase. In the limit we obtain an anisotropic sharp interfaces model. The relevant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003